

CAIE Chemistry A-level Topic 31 - Halogen Compounds (A level only) Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

R www.pmt.education

What is a halogenoarene?

What is a halogenoarene?

An aromatic hydrocarbon whereby one or more hydrogen atoms bonded to the aromatic ring are replaced by a halogen atom.

Describe the bromination of benzene

Describe the bromination of benzene

Benzene only reacts with bromine if a halogen carrier, $FeBr_3$ or $AlBr_3$, is present.

This forms bromobenzene and hydrogen bromide:

$$C_6H_6 + Br_2 \rightarrow C_6H_5Br + HBr$$

What is the role of the halogen carrier in the bromination of benzene?

What is the role of the halogen carrier in the bromination of benzene?

The halogen carrier generates the electrophile:

$$Br_2^{} + FeBr_3^{} \rightarrow FeBr_4^{-} + Br^+$$

FeBr₄⁻ then reacts with the proton expelled from the intermediate to regenerate the halogen carrier:

www.pmt.education

$$\operatorname{FeBr}_{4}^{-} + \operatorname{H}^{+} \rightarrow \operatorname{FeBr}_{3}^{-} + \operatorname{HBr}_{3}^{-}$$

 $\mathbf{\mathbf{E}}$

PMTEducation

Draw and name the mechanism for the bromination of benzene

Draw and name the mechanism for the bromination of benzene

Electrophilic substitution

The Br⁺ ion accepts a pair of electrons from the ring of delocalisation. The intermediate is so unstable that it breaks down, releasing a hydrogen ion. This forms the product, bromobenzene.

Compare the reactivity of chlorobenzene to chloroalkanes

Compare the reactivity of chlorobenzene to chloroalkanes

- The C-Cl bond in chlorobenzene is stronger than expected.
 One of the lone pairs on the chlorine atom interacts with the delocalised ring electrons, strengthening the bond.
- This means the bond is harder to break and hence requires more energy to overcome.

Therefore, chlorobenzene is less reactive than chloroalkanes.

PMTEducation

